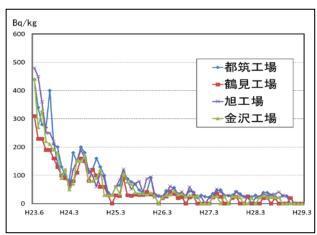
第7 東日本大震災後の対応

1 放射線対策

東日本大震災による原子力発電所事故を受けて、ごみの処理・処分を行っている施設における放射性セシウムの濃度や空間線量の測定、焼却灰からの放射性セシウムの溶出防止対策等を行っています。

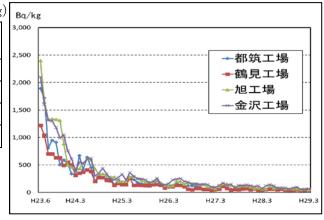
(1) 焼却工場での測定結果


ア 焼却灰 (主灰、飛灰) *1

平成 23 年 6 月から全工場で放射性セシウム (Cs-134 及び Cs-137) の測定を始め、埋立の基準 2 である 8,000Bq/kg を下回っています。

主灰の放射性セシウム (Cs-134 と Cs-137 の合計) の測定結果

	(単			位:Bq/kg)	
	H23 年	H29 年	H29 年	H29 年	
	6月	1月	2月	3月	
鶴見工場	310	不検出	不検出	不検出	
旭工場	480	不検出	不検出	不検出	
金沢工場	440	不検出	不検出	不検出	
都筑工場	440	不検出	不検出	不検出	


定量下限 Cs-134、Cs-137: それぞれ 20Bq/kg

飛灰の放射性セシウム (Cs-134 と Cs-137 の合計) の測定結果

			(単位	立:Bq/kg
	H23 年	H29 年	H29 年	H29 年
	6月	1月	2月	3月
鶴見工場	1, 220	31	39	49
旭工場	2, 400	51	57	52
金沢工場	2, 100	56	58	67
都筑工場	1,890	45	40	36

定量下限 Cs-134、Cs-137: それぞれ 20Bq/kg

※1 「主灰」及び「飛灰」

「主灰」とは、ごみを焼却した際の燃え殻のことです。また「飛灰」とは、排ガス中に含まれるばいじんが大気中に排出されるのを防ぐために設置しているろ過集じん機(バグフィルタ)で捕集したばいじんを薬剤等で処理したものです。

※2 埋立の基準

放射性物質汚染対処特別措置法(以下、「特措法」という)では、事故由来放射性物質である Cs-134 及び Cs-137 の合計が 8,000Bq/kg を超えた場合は、「指定廃棄物」として国が処理することとしています。8,000Bq/kg 以下については、廃棄物処理法に基づき処理できることとされています。

イ 排ガス

平成 23 年 8 月に旭工場から放射性セシウム (Cs-134 及び Cs-137) の測定を始め、10 月以降は全工場で測定しており、全て不検出 (定量下限値未満) となっています (濃度限度 *3 は Cs-134 で 20Bq/ *3 、Cs-137 で 30Bq/ *3 定量下限値はそれぞれ 2Bq/ *3)。当該測定は、平成 29 年 3 月をもって終了しました。

ウ 工場排水

平成 23 年 8 月から全工場で放射性セシウム (Cs-134 及び Cs-137) の測定を始め、平成 23 年 9 月に鶴見工場で Cs-137 が 13Bq/L 検出されましたが、それ以外は全て不検出 (定量下限値未満) となっています。 (濃度限度 *3 は Cs-134 で 60Bq/L、Cs-137 で 90Bq/L 定量下限値はそれぞれ 10Bq/L)。 当該測定は、平成 29 年 3 月をもって終了しました。なお、工場排水は、旭工場、金沢工場及び都筑工場では場内で再利用しているほか、鶴見工場では下水道へ放流しています。

エ 敷地境界等での空間線量

平成 23 年 7 月から全工場の敷地境界及び工場内の飛灰処理作業場所等で空間線量測定を行って おり、市内で継続的にモニタリングしている地点での測定値と同レベルとなっています。なお、当 該測定は、工場内の飛灰処理作業場所の一部を除き平成 29 年 3 月をもって終了しました。

(2) 最終処分場での測定結果

ア 排水

平成 23 年 6 月から神明台処分地及び南本牧最終処分場について、排水処理施設の流入水及び放流水に含まれる放射性セシウム(Cs-134 及び Cs-137)の測定を行っており、全て不検出(定量下限値未満)となっています(濃度限度 *3 は Cs-134 で 60Bq/L、Cs-137 で 90Bq/L 定量下限値はそれぞれ 10Bq/L)。なお、神明台処分地での測定は平成 28 年 3 月をもって終了しました。

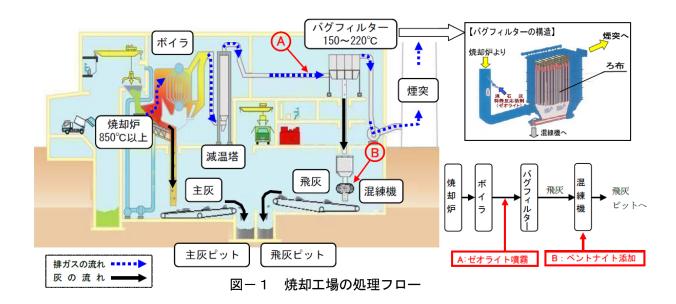
イ 周辺海水・地下水

平成 23 年 6 月から南本牧最終処分場周辺海水、9 月から神明台処分地周辺地下水の放射性セシウム (Cs-134 及び Cs-137) の測定を行っていますが、全て不検出(検出下限値未満)となっています (濃度限度 **3 は Cs-134 で 60Bq/L、Cs-137 で 90Bq/L 検出下限値はそれぞれ 1 Bq/L)。なお、神明台処分地周辺地下水の測定は平成 28 年 3 月をもって終了しました。

ウ 敷地境界等での空間線量

平成23年7月から最終処分場の敷地境界や埋立場所、神明台スポーツ施設で空間線量測定を行っており、市内で継続的にモニタリングしている地点での測定値と同レベルとなっています。なお、神明台処分地での測定は平成28年3月をもって終了しました。

※3 濃度限度


特措法施行令で定められた特定一般廃棄物・特定産業廃棄物を処理する焼却工場や最終処分場では、 処理に伴い発生した排ガスや排水に含まれる原発事故由来の放射性セシウムの濃度を監視することで 施設周辺の大気や、河川等の公共の水域において、それぞれの3か月間の平均濃度の下表の濃度に対 する割合の和が、1を超えないようにすることと定められています。

	Cs-134	Cs-137
空気中の濃度限度	$20\mathrm{Bq/m^3}$	$30 \mathrm{Bq/m^3}$
公共の水域の濃度限度	60Bq/L	90Bq/L

(3) 焼却灰からの放射性セシウム溶出防止対策

ア 焼却工場における対策

工場で発生した飛灰は、水と接触すると放射性セシウムを溶出しやすいことから、ろ過式集じん器 (バグフィルター) の前でゼオライト (吸着剤) を噴きつけ、さらに混練機にベントナイト (吸着剤) を添加する溶出防止対策を平成 24 年 4 月から全工場で実施しています (図-1)。

イ 南本牧最終処分場における対策

飛灰からの放射性セシウムの溶出を防止するため、高密度化工事等により飛灰の分離埋立てを継続して実施しています(図-2)。

さらに、処分場排水処理施設における放射性セシウム除去対策として、活性炭吸着塔 6塔のうち 2塔に活性炭の代わりにゼオライトを充填するとともに、第二凝集沈殿槽にゼオライト粉末液を添加し、セシウムを除去して汚泥として回収できるよう施設を改修し、セシウムの吸着機能を高める対策を行っています(図-3)。

なお、これらの設備は、通常時は使用せず、 処分場内水中のセシウム濃度が上昇した場合 に稼動させます。

図-2 高密度化工事実施場所

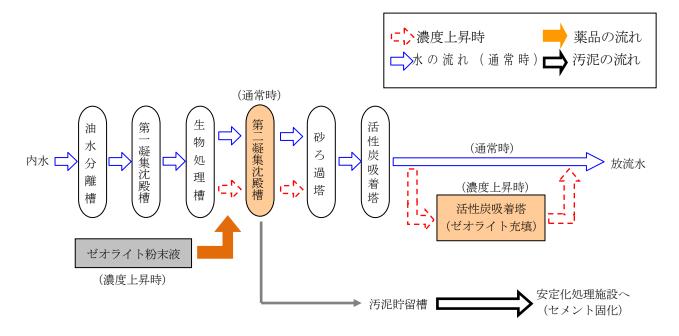


図-3 排水処理のフロー